
HTTP 2 P2P
From HTTP to P2P: A survey on how to 
extend HTTP into a fully P2P protocol



Extending HTTP → P2P
• We can make the web fully P2P


• With 4 backwards-compatible, orthogonal 
extensions


• Where each provides independent utility and 
adoption incentive


• Our work is to create Protocol Specification, Tools, and 
Apps for each extension.

2



The 4 Extensions
• 1. Subscriptions


• 2. Multi-writer Mutations


• 3. HTTP2P Message Semantics


• 4. HTTP2P Transport

3

Available in Braid-HTTP!

In Prototype

Open for discussion



1. Subscriptions

4



1. Subscriptions

5

Controllers
Models

Database

Webpage DOM
HTML Template Views

Javascript Models

Views

HTTP Websites

http://

State
State
State

State
State
State

State

Braid Websites

http://

Non-standard Standard

Server

Client



1. Subscriptions
• Standardizes the MVC cruft


• Benefits developers


• Unifies HTTP w/ Sync tools (e.g. websocket)


• Less to learn, and more powerful


• Better architecture: state vs. events


• 70% less code. React across the stack.


• Decentralizes web


• Separates UI from Data


• Decentralizes control over UI and attention
6



1. Subscriptions

7

UI

Data

UI

Data Data

UI UI

Today, the owner of data 
controls the interface. Now we can separate interface from data.


Users control their interface.



2. Mutations

8



2. Mutations
• Guarantee Multi-Writer Consistency


• Collaborative Editing


• Offline mode (local-first)


• But each sub-feature also useful independently


• Version


• Parents


• Patches


• Merge-Type

9



2. Mutations
• Examples:


• Versioning your <script src=“foo.js”> files (only need 
version)


• Subscribe to server logs (only need patches)


• Append-only chat (only need patches)


• Reconnect (need version)


• CDNs hosting dynamic state


• WebRTC fallback when server dies (need version & 
parents)


• User community could fork a website
10



2. Mutations

• Enables:


• Collaborative Editing


• Local-first Offline Mode


• Dynamic CDNs


• Enables app-specific decentralization:


• WebRTC P2P networking fallback


• Community can fork away from malicious server

11



3. P2P Message Semantics

• HTTP is


• Request/Response


• Client/Server


• GET, PUT, POST, DELETE


• This limits the behavior of


• Mutations


• Validation


• Acknowledgements

12



3. P2P Message Semantics

13

HTTP needs P2P 
Semantics for: 

• Mutation

• Validation

• Acknowledgement



3. P2P Message Semantics

14

Re-imagines HTTP Methods as P2P instead of Client/Server!

Mutation, Validation, Acknowledgement



3. P2P Message Semantics

15

Re-imagines HTTP Methods as P2P instead of Client/Server!

Mutation, Validation, Acknowledgement



3. P2P Message Semantics

• Enables:


• Server can request state from client


• Client can request state from peer


• Server1 can request state from server2


• Server1 can validate based on Server2 + db


• Multi-server transactions can validate via client


• Validation rules can be standardized and distributed


• P2P network that prunes history automatically

16



4. P2P Transport
• Transport


• HTTP2 already has P2P message frames


• Naming (DNS)


• Encryption (TLS)


• Identity (certificates)


• Route-finding


• URLs

17



Overview of Work



4. P2P Transport

19

Many Dweb projects focus on Transport— 
but the web’s immediate pain points are in 

Subscriptions and Mutations.

Discussion:


